Antibacterial activity of asam gelugur (*Garcinia atroviridis*) fruit extract and productive performance of Japanese quails (*Coturnix coturnix japonica*) fed with *Garcinia atroviridis* powder

Niyomdecha, A.^{1*}, Pitchayapipatkul, J.¹, Semae, S.¹, Chealoh, N.² and Totayong, J.³

¹Major of Animal Science, Faculty of Agriculture, Princess of Naradhiwas University, Thailand; ²Major of Fisheries, Faculty of Agriculture, Princess of Naradhiwas University, Thailand; ³Program in Digital Technology for Business, Faculty of Management Science, Princess of Naradhiwas University, Thailand.

Niyomdecha, A., Pitchayapipatkul, J., Semae, S., Chealoh, N. and Totayong, J. (2025). Antibacterial activity of asam gelugur (*Garcinia atroviridis*) fruit extract and productive performance of Japanese quails (*Coturnix coturnix japonica*) fed with *Garcinia atroviridis* powder. International Journal of Agricultural Technology 21(6):2443-2460.

Abstract The HPLC analysis detected 435.14 \pm 6.67 mg/g (43.51%) of hydroxycitric acid (HCA) in the crude extract. Acetone extracts at the greatest concentration (200,000 µg/ml) were found to inhibit the growth of *E. coli* and *S. enterica*, with inhibition zones of 35.53 and 33.08 millimeters (mm), respectively. The MIC against *E. coli* and *S. enterica* was 12,500 µg/mL. The MBC values required to kill *E. coli* and *S. enterica* were 25,000 and 12,500 µg/mL, respectively. The results demonstrated a statistically significant increase in the final body weight of quail chicks supplemented with 0.2% commercial organic acids and those receiving 10 and 20 g/kg of *G. atroviridis* powder, relative to the control group, at 7–8, 8–9, and 3–9 weeks of age (P < 0.05). Furthermore, these findings supported the use of *G. atroviridis* as a feed additive for Japanese quails. Specifically, dietary supplementation with 10–20 g/kg of *G. atroviridis* powder significantly improves the productive performance of Japanese quails at 7–9 weeks of age.

Keywords: Antibacterial activity, *Garcinia atroviridis*, Productive performance, *Coturnix coturnix japonica*

Introduction

The Japanese quail has long been a popular poultry species for farming due to its meat and eggs being a good source of protein. This ongoing demand has driven the development of more efficient production processes to response consumer needs. The Japanese quail is considered an economically important animal due to the consumption of its meat and eggs. Quails are easy to raise, resilient, disease-resistant, and adaptable to different environments. Furthermore, the ongoing population growth has resulted in an increased need for animal

^{*}Corresponding Author: Niyomdecha, A.; Email: andromeda9569@gmail.com

protein sources such as chicken and quail meat, which are easily digestible, inexpensive, and ideal for customers. As a result, demand for quail meat has risen. In the past, the use of antibiotics or harmful chemicals in animal feed and drinking water was common in quail farming to increase the production performance, promote gut health, and improve carcass quality to meet consumer demand. However, the inappropriate use of these substances can lead to residues in animal products and antibiotic resistance in consumers. Consequently, medicinal plants like *G. atroviridis*, which are rich in diverse organic acids possessing significant pharmacological and biological activities, represent a promising feed additive to enhance the productive performance, carcass characteristics, and meat quality of Japanese quails.

Garcinia atroviridis Griff. ex T. Anders (asam gelugur), a medium-sized fruit tree, is a member of the Guttiferae family. This species is naturally distributed across Peninsular Malaysia, India, Myanmar, and Thailand (Mackeen et al., 2002; Tan et al., 2014). The genus Garcinia comprises approximately 180 known species globally, with 29 species reported specifically in Thailand (Ritthiwigrom et al., 2013). Of these, five species (G. atroviridis, G. dulcis, G. mangostana, G. nigrolineata, and G. scortechinii) are endemic to Southern Thailand (Phongpaichit et al., 2006; Kerddonfaek, 2010). The plant is highly prevalent in Southern Thailand, with abundant growth reported specifically in the Sai Khao sub-district of Khok Pho district, Pattani province (Niyomdecha et al., 2021). Ecologically, G. atroviridis flourishes in lowland areas, demonstrating adaptability to both clay loam and sandy clay loam soil types. The flowering period typically occurs between January and February, with subsequent fruit production commencing in February. The main harvest season generally extends from July to September (Niyomdecha et al., 2021). G. atroviridis is widely employed in culinary applications as a flavoring agent (Lim, 2012). Furthermore, it is recognized as a medicinal plant due to its rich chemical profile. Research indicates that the plant contains a range of organic acids, including citric acid, tartaric acid, malic acid, ascorbic acid, pentadecanoic acid, octadecanoic acid, and dodecanoic acid (Sebola et al., 2011). Research by Niyomdecha et al. (2022a) further established that hydroxycitric acid (HCA) is the crucial organic acid in G. atroviridis, quantified at 495.01±2.13 mg/g (49.50%). This HCA exhibited significant antibacterial properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 12,500 and 25,000 μg/mL, respectively, against E. coli and S. enterica. Several studies have reported that the fruit of G. atroviridis, due to its high HCA and diverse organic acid content, possesses a wide array of beneficial bioactivities. These properties include antibacterial, antitumour, antifungal, anti-inflammatory and management of high blood pressure. Furthermore, the plant is known to inhibit fatty acid synthesis, promote animal health, and prevent diseases in animals (Pangsuban *et al.*, 2009; Hamidon *et al.*, 2017), stimulate appetite, balance gut microbiota, and promote intestinal health. Organic acids act as acidifiers, inhibiting the growth of pathogenic bacteria while increasing beneficial bacteria, resulting in a healthier digestive system and improved animal growth. The antibacterial activity of *G. atroviridis* fruit extract was assessed, and the productive performance of Japanese quails fed *G. atroviridis* powder was investigated.

Materials and methods

Antibacterial activity assay

Plant material

Fresh fruits of *G. atroviridis* were collected during July and August 2023 from the Sai Khao sub-district, Khok Pho district, Pattani province, Thailand. The *G. atroviridis* plant material was formally identified by Assoc. Prof. Dr. Charan Leeratiwong at the Prince of Songkla University Herbarium. A voucher specimen (accession number: A. Niyomdecha 001) has been deposited at the Prince of Songkla University Herbarium, located within the Department of Biology, Faculty of Science, Prince of Songkla University.

Microorganisms

The test bacterial strains employed for the antibacterial activity assay were *Escherichia coli* (*E. coli*; gi: CP033762.1) and *Salmonella enterica* (*S. enterica*; gi: KX355299.1). Both strains were obtained from the Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand.

Bacterial culture

The bacterial stock culture was initially prepared by culturing on Mueller Hinton Agar (MHA) plates, followed by incubation at 37°C for 18 to 24 hours. Subsequently, a single bacterial colony was inoculated into 100 mL of Mueller Hinton Broth (MHB) and incubated at 37°C for 4 hours. The final bacterial culture density required for the assay was standardized to 1.0x108 colony forming units per mL (cfu/mL). This standardization was achieved by diluting the fresh liquid culture and comparing its turbidity to a 0.5 McFarland standard density (Niyomdecha *et al.*, 2022a).

G. atroviridis fruit extraction

Fresh *G. atroviridis* fruits were initially prepared by slicing them into small pieces and then drying them in a hot air oven at a temperature range of 55–60°C for three days. The resulting dried-sliced fruit was subsequently ground into a powder using an electric blender. This powder was then subjected to maceration with acetone at a 2:4 L (w/v) ratio at room temperature for a duration of thirty days. Following maceration, the mixtures were filtered, and the filtrate was concentrated by removing the solvent (acetone) using a rotary evaporator at a temperature of 50–55°C under reduced pressure. This protocol, adapted from the method described by Plodpai *et al.* (2013), yielded the crude *G. atroviridis* fruit extract, which was then stored in a refrigerator at 4°C until required for further analysis.

Quantification of hydroxycitric acid (HCA) in G. atroviridis fruit extract

The quantification of hydroxycitric acid (HCA) within the G. atroviridis fruit extract was performed using High-Performance Liquid Chromatography (HPLC). The analysis employed a Hewlett-Packard 1100 Series (HPLC-1) system equipped with a Diode Array Detector (DAD). HCA was detected at a wavelength of 210 nm. A precise amount of the acetone extract (10.26 mg) was accurately weighed and dissolved in 10 mL of 0.1% phosphoric acid (H₃PO₄). The mixture was thoroughly mixed using a vortex mixer for 1 minute. Prior to injection into the HPLC system, the sample was meticulously filtered through a 0.22 µm nylon membrane to remove particulates. 95% Potassium hydroxycitrate tribasic monohydrate (Sigma, USA) was used as the external standard for calibration and accurate HCA measurement. The acetone extract was separated using a ZORBAX Eclipse XDB-C8 column with dimensions of 150×4.6 mm id. and 5 μm particle size. The mobile phase comprised 0.1% H₃PO₄ in deionised water. The sample injection volume was set at 20 µl, and the flow rate was kept at 0.5 ml/min. The sample was run for ten minutes at 25°C column temperature. After that, HCA was detected at a wavelength of 210 nm, and the HCA concentration in the extract was measured by comparing the extract's peak regions to those of the standard. The HPLC analysis was finally performed (Gogoi et al., 2014).

Disc diffusion method

The antibacterial activity of the crude *G. atroviridis* fruit extract was investigated using the disc diffusion method, as established by Bauer *et al.* (1996). Bacterial cultures were standardized to achieve a turbidity equivalent to the 0.5 McFarland standard. The standardized bacterial suspension was

uniformly spread across the surface of Mueller Hinton agar plates using a sterile cotton swab, creating an even microbial lawn. Paper discs were impregnated with the G. atroviridis fruit extract, using a volume of 10 μ l per disc, and subsequently placed onto the inoculated agar surface. Notably, the acetone extract of G. atroviridis was dissolved in dimethyl sulfoxide (DMSO) for this testing, which served as the vehicle for the extract delivery. The G. atroviridis extract was tested at five serial concentrations: 25,000, 50,000, 100,000, 150,000, and 200,000 µg per mL. DMSO was used as a negative control. Ciprofloxacin at a concentration of 100 µg per mL per disc served as the positive control. For the acetoneextracted samples, four treated discs were placed on the agar surface, ensuring an equidistant distribution. The inoculated plates were incubated at 37°C for a period of 18-24 hours. Antibacterial activity was determined by measuring the diameter of the zone of inhibition (in mm) surrounding each disc. Measurements were precisely taken using callipers. To ensure the reliability of the data, the entire experiment was performed in triplicate for every concentration of the G. atroviridis extract against each bacterial strain tested.

Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The Minimum Inhibitory Concentration (MIC) of the G. atroviridis acetone fruit extract was assessed using the broth microdilution method. The extract was prepared for testing in 96-well microtiter plates. An aliquot of the acetone extract (100 ul) was diluted to create a concentration range spanning from a minimum of 781.25 µl/mL up to a maximum of 100,000 µl/mL. Test bacterial strains were first cultured on Mueller Hinton Agar (MHA) and incubated overnight at 37°C. An aliquot of the culture was then transferred and suspended in 50 mL of Mueller Hinton Broth (MHB), followed by incubation at 37°C for 3–5 hours to reach the exponential growth phase. The resulting bacterial suspension was standardized using a 0.85% NaCl solution to match the turbidity of the 0.5 McFarland standard. This standardization corresponds to a final concentration of approximately 1.5x108 cfu/mL. In the 96 well microtiter plates, which already contained the serially diluted G. atroviridis extract, 100 µl of the standardized culture was added to each well containing 100 µl of MHB supplemented with the extract. This inoculation step resulted in a final bacterial concentration of approximately 106 cfu/mL in each test well. The plates were then incubated at 37°C for 16-18 hours. 1% DMSO was used as a negative control. Ciprofloxacin (100 µl) was used as a positive control. It was diluted to final concentrations ranging from 1.95 to 250 µg/mL and incubated under identical circumstances. The MIC was defined as the lowest concentration of G. atroviridis crude extract that did not cause noticeable turbidity in the tested bacteria. A 10 µl aliquot from the clear wells with the MIC value was distributed on fresh MHA plates and incubated overnight at 37°C. The MBC value was established as the lowest concentration of crude extract required to totally kill the bacterium. The experiment was carried out in triplicate. (CLSI, 2008).

Effects of G. atroviridis powder supplementation in diet on the productive performance of Japanese quails

The current investigation was reviewed by the Institutional Animal Care and Committee, Princess of Naradhiwas University, Thailand No PNU.AE-2024/01.008.

G. atroviridis powder preparation

The G. atroviridis fresh fruits were collected from the Sai Khao sub-district of Khok Pho district, Pattani province, Thailand. The collected fruits were uniformly sectioned into small pieces, measuring 2–3 centimeters. These slices were subjected to sun-drying for a duration of 72 hours. Following sun-drying, the slices were transferred to a hot air oven and dried at a controlled temperature range of 60–65°C for an additional three days. The dried slices were subsequently comminuted into a fine powder using an electric grinder. The resulting G. atroviridis powder was meticulously sieved through a 1-millimeter mesh. The final powdered material was hermetically sealed in glass bottles and maintained under refrigerated conditions at 4°C until required for subsequent experimentation or analysis.

Animal and experimental design and treatments

The effects of asam gelugur (*G. atroviridis*) powder supplementation in diet on productive performance of Japanese quail were studied. The experiment was conducted in a Completely Randomized Design (CRD). A total of 192 male Japanese quails, aged 3 weeks (average body weight is 78.63±5.05 grams), were weighed and randomly devided into four treatment groups with four replicates containing 12 chicks each. Four dietary treatments i.e., control diet (T1), control diet supplemented with 0.2% commercial organic acids (T2), control diet supplemented with 10 g/kg and 20 g/kg of *G. atroviridis* powder (T3 and T4, respectively) were used. The quails were fed *ad libitum* with a basic commercial quail's starter mash during the rearing period. The experimental feed was a commercial ready-made feed for quail chicks during the starter phase (1 day to 4 weeks of age), containing no less than 22% protein, no less than 3% fat, and no more than 13% moisture. The feed was analyzed on a dry matter basis. The quails were kept in an open housing system with proper cleanliness and good

ventilation. The environmental conditions were the same for all groups. The cage size used is 52 centimeters in width, 73 centimeters in length, and 43 centimeters in height.

Productive performance

This study was undertaken on Japanese quails to evaluate their productive performance. The following performance parameters were monitored and recorded: final body weight (LBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR), and survival rate. To track daily environmental fluctuations, the internal housing temperature and relative humidity (RH) were systematically recorded three times per day: at 9:00 a.m., 12:00 p.m., and 3:00 p.m.

Statistical analysis

The collected data were subjected to statistical analysis using a one-way analysis of variance (ANOVA). Duncan's Multiple Range Test (DMRT) was used for the analysis of comparisons of means. Descriptive statistics were compared with the UNIVARIATE procedure of SAS software (SAS, 2017).

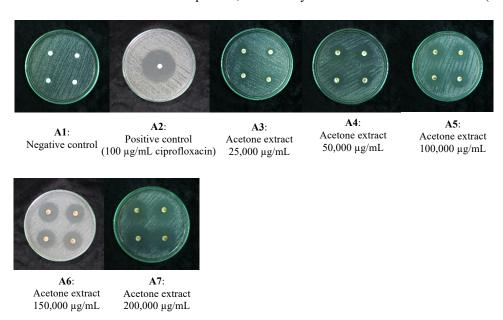
Results

Antibacterial activity assay

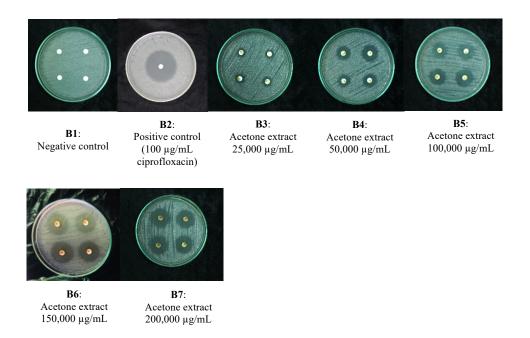
The crucial active ingredient of G. atroviridis fruit

The crude extract of acetone extract was brownish gum. The main active ingredient found in an aceton extract was HCA, identified by HPLC analysis at 435.14±6.67 mg/g (43.51%), with a retention time of 2.942 minutes.

Antibacterial susceptibility testing


The antibacterial efficacy of various concentrations of the *G. atroviridis* fruit acetone extract was determined using the disc diffusion assay. The results found that the acetone extract demonstrated effective inhibition against both *E. coli* and *S. enterica* across all concentrations evaluated. A statistically significant increase (P<0.01) in the diameter of the inhibition zones was observed for both bacteria as the extract concentration increased, relative to the negative control. The maximum concentration tested (200,000 µg/ml) of acetone extracts inhibited the largest inhibition zones for both strains, measuring 35.53 mm against *E. coli* and 33.08 mm against *S. enterica*. The inhibition zones for 150,000, 100,000, 50,000, and 25,000 µg/mL acetone extracts of *E. coli* were 31.39, 28.08, 25.67,

and 18.36 mm, respectively. The inhibition zones of *S. enterica* measured 33.08, 28.86, 24.92, 22.53, and 16.44 mm, respectively (Table 1 and Figures 1 and 2).


Table 1. The effects of acetone extract of *G. atroviridis* fruit on clear inhibition zones around the discs of *E. coli* and *S. enterica*

	The inhibition zones (mm) \pm SEM ^{3/}		
	E. coli S. enterica		
1%DMSO ^{1/}	$0.00\pm0.00^{\rm g}$	$0.00\pm0.00^{\rm g}$	
Acetone extracted 25,000 μg/mL	$18.36 \pm 0.63^{\rm f}$	$16.44 \pm 0.85^{\mathrm{f}}$	
Acetone extracted 50,000 μg/mL	25.67 ± 0.61^{e}	22.53 ± 0.23^{e}	
Acetone extracted 100,000 μg/mL	28.08 ± 0.52^{d}	24.92 ± 0.38^{d}	
Acetone extracted 150,000 μg/mL	31.39 ± 0.46^c	28.86 ± 0.27^{c}	
Acetone extracted 200,000 μg/mL	35.53 ± 0.31^{b}	33.08 ± 0.40^{b}	
Ciprofloxacin ^{2/}	42.81 ± 0.37^a	$41.94\pm0.43^{\mathrm{a}}$	
P-value	P<0.0001	P<0.0001	

¹/Plate inoculated without acetone extract as negative control, 2 /Ciprofloxacin 100 μg/mL (Sigma, USA) as a positive control, 3 /SEM: Standard error of the mean. At the 0.01 level, there is no significant difference between the mean values in the same column followed by the same letter. Each value is the mean of three replicates, followed by ± the standard error of the mean (n = 3).

Figure 1. The inhibitory zones (mm) of various doses of acetone extract from *G. atroviridis* fruit against *E. coli* (A1–A7)

Figure 2. The inhibitory zones (mm) of various doses of acetone extract from *G. atroviridis* fruit against *S. enterica* (B1–B7)

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays

The antibacterial efficacy of the acetone extract derived from G. atroviridis fruit was quantitatively assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values using the broth microdilution method. The extract was tested against two gramnegative bacterial strains at concentrations spanning from 781.25 μ g/mL to 100,000 μ g/mL. A uniform MIC value of 12,500 μ g/mL was found to be effective in inhibiting the growth of both E. coli and S. enterica. The MBC values required for complete eradication of the strains were differentiated: 25,000 μ g/mL for E. coli and 12,500 μ g/mL for S. enterica (see Table 2 for a detailed breakdown of results).

Table 2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of acetone extract of *G. atroviridis* fruit against *E. coli* and *S. enterica*

	MIC (μg/m	MIC (μg/mL)		nL)
	E. coli	S. enterica	E. coli	S. enterica
Acetone extracted	12,500	12,500	25,000	12,500
Ciprofloxacin ^{1/}	1.95	1.95	1.95	1.95

 $^{\text{I/C}}$ Ciprofloxacin (Sigma, USA) as a positive control MIC (μ g/mL) = minimum inhibitory concentration

MBC (μ g/mL) = minimum bactericidal concentration

Productive performance

The effects of *G. atroviridis* powder supplementation in diet on the productive performance of Japanese quails were investigated. The findings showed that quails supplemented with 0.2% commercial organic acids, and those supplemented with 10 and 20 g/kg of *G. atroviridis* powder, showed significantly higher final body weight in compared to the control group (P<0.05) at 7–8, 8–9, and 3–9 weeks of age. However, this study found that all of the treatment groups did not affect on feed intake, final body weight, average daily gain, feed conversion ratio, and survival rate of Japanese quails at 3–6 weeks of age, as presented in Table 3.

Table 3. Effects of *G. atroviridis* powder supplementation in diet on productive performance of Japanese quails at 3–9 weeks of age

Age of bird (weeks)	Experimental groups	Feed intake (g/b)	Final body weight (g/b)	Average daily gain (g/b)	Feed conversion ratio	Survival rate (%)
3–4	T1	15.11	94.75	15.89	1.01	100.00
	T2	15.31	95.63	16.98	1.05	100.00
	T3	15.85	95.65	16.79	1.09	100.00
	T4	15.74	94.39	16.23	1.08	100.00
	SEM	0.27	1.00	1.69	0.10	-
	P-value	0.7472	0.9592	0.9954	0.9906	-
4–5	T1	17.83	120.94	26.19	0.76	100.00
	T2	18.69	121.29	25.67	0.73	100.00
	T3	18.32	122.96	27.31	0.69	100.00
	T4	18.62	122.23	27.83	0.68	100.00
	SEM	0.30	1.09	1.36	0.05	-
	P-value	0.7420	0.9095	0.9376	0.9415	-
5–6	T1	19.07	133.04	12.10	2.09	100.00
	T2	20.79	135.31	14.02	2.03	100.00
	T3	20.78	136.71	13.75	1.99	100.00
-	T4	20.87	135.99	13.77	1.59	100.00

Age of	Experimental	Feed	Final	Average	Feed	Survival
bird	groups	intake	body	daily gain	conversion	rate (%)
(weeks)		(g/b)	weight	(g/b)	ratio	
	SEM	0.65	(g/b) 1.37	1.77	0.29	
	P-value	0.03	0.8012	0.9792	0.29	-
6–7	T1	20.43	144.73	11.69	2.02	100.00
0-7	T2	21.96	144.73	13.95	1.98	100.00
	T3		149.26	11.04	2.18	100.00
	T4	21.94 22.49	147.73	12.86	2.18	100.00
	SEM	0.45		1.29	0.26	100.00
	P-value	0.43	1.65 0.7666	0.8604	0.26	-
7–8			153.41 ^b			100.00
/-8	T1	21.38		8.68	2.99	100.00
	T2	22.66	158.33 ^a	9.07	2.87	100.00
	T3	22.82	158.67 ^a	10.92	2.86	97.92
	T4	23.24	158.58a	9.73	2.54	100.00
	SEM	0.74	0.71	1.25	0.34	0.52
	P-value	0.8307	0.0582	0.9244	0.9707	0.4262
8–9	T1	22.42	159.48 ^b	6.07	3.72	100.00
	T2	23.21	167.92ª	9.58	2.95	100.00
	T3	22.64	169.48a	10.80	2.31	97.92
	T4	22.92	167.55 ^a	8.97	2.93	100.00
	SEM	0.63	1.02	0.99	0.24	0.52
	P-value	0.9728	0.0200	0.4149	0.3053	0.4262
3–9	T1	116.24	159.48 ^b	80.63	1.45	100.00
	T2	122.63	167.92ª	89.27	1.39	100.00
	T3	122.33	169.48 ^a	90.62	1.36	97.92
	T4	123.88	167.55 ^a	89.38	1.39	100.00
	SEM	1.23	1.02	1.96	0.03	0.52
	P-value	0.1800	0.0200	0.2994	0.8218	0.4262

T1 (treatment 1): Control group (commercial feed without *G. atroviridis* powder), T2 (Treatment 2): Commercial feed supplemented with 0.2% commercial organic acid, T3 (Treatment 3): Commercial feed supplemented with *G. atroviridis* powder at 10 g/kg, and T4 (Treatment 4): Commercial feed supplemented with *G. atroviridis* powder at 20 g/kg.

Discussion

Antibacterial activity assay

The crude extract of *G. atroviridis* demonstrated effective inhibition of pathogenic bacterial growth. This antimicrobial activity is likely attributable to the presence of organic acids and phenolic compounds within the fruit. Analysis of the acetone extract further identified hydroxycitric acid (HCA) as the main active ingredient, constituting a significant 43.51% of the extract's composition. This finding suggests HCA is a key contributor to the observed antibacterial

^{ab}Means with different letters in the same column show significant differences (P<0.05).

^{1/}SEM: Standard error of the mean.

efficacy. In fact, a previous study reported that the crude extract of G. atroviridis from ethanol extraction yielded 38.09% and contained a higher concentration of HCA (49.50%). (Niyomdecha et al., 2022a). Meanwhile, Susanti et al. (2020) declared that G. atroviridis extract contained 11.35 \pm 0.55% (w/w) HCA. Furthermore, the HCA concentration of G. cambogia fruit has been determined to be between 42% and 44% (Edirisinghe et al., 2015). Additionally, another researcher claimed that G. cambogia fruit contained 20–30% HCA (Lewis and Neelakantan, 1965).

For antibacterial susceptibility testing, the results of current study demonstrated that acetone extract of G. atroviridis fruit exhibited potential antibacterial properties against both E. coli and S. enterica. Similarly, a previous study by Niyomdecha et al. (2022a) illustrated that ethanol extract of G. atroviridis fruit as an antibacterial agent which dominantly effective against E. coli and S. enterica., In addition, the inhibition zones of 200,000, 150,000, 100,000, 50,000, and $25,000 \mu g/mL$ ethanol extracts of E. coli were 33.11, 27.19, 23.11, 20.25, and 16.03 mm, respectively. The diameters of the inhibition zones of S. enterica were 31.58, 25.39, 21.17, 18.28, and 15.56 mm, respectively. The results agree with Bacayo et al. (2018) also confirmed that 100% concentration of G. atroviridis extract could have potential against the growth of Klebsiella pneumoniae and Methicillin-resistant Staphylococcus aureus (MRSA), with diameters of inhibition zones of Klebsiella pneumoniae and MRSA at 15.33 and 10.76 mm, respectively. The inhibitory effects observed are consistent with findings by Al-Askalany (2018), who reported that a 10% water extract (both cold and hot) of G. cambogia was highly effective against both gram-positive (B. cereus) and gram-negative (E. coli) bacteria. Furthermore, other researchers have also indicated the significant antibacterial activity of a methanol extract from G. atroviridis fruit (Mackeen et al., 2000). This extract demonstrated high potential against a panel of bacteria, including S. aureus, B. subtilis B28 (mutant) and B29 (wild type), and E. coli. The effective concentration for these strains was reported as a minimum inhibitory dose (MID) of 500 µg/disc. The current results are compared with other studies on G. atroviridis extracts: Niyomdecha et al. (2022a) reported that an extract had an MIC value of 12,500 μg/mL, effective against both E. coli and S. enterica. The MBC value required to completely kill both bacteria was found to be 25,000 µg/mL. Meanwhile, Tongboon (2013) also found that the ethanol extract of G. atroviridis fruit reported an MIC value of 1 mg/ml for inhibiting S. aureus and E. coli. Another researcher declared the MIC value against Pseudomonas aeruginosa, Bacillus cereus, E. coli and Cryptococcus neoformans were 100, 400, 800, and 800 µg/mL. respectively. Additionally, the minimum lethal concentration (MLC) against *Pseudomonas* aeruginosa, Bacillus cereus and Cryptococcus neoformans were 400, 800, and

800 μg/mL, and more than 800 μg/ml against *E. coli*. (Mackeen *et al.*, 1997). Moreover, Hart and Cock (2016) demonstrated that the crude extract derived from *G. cambogia* fruit exhibited significant broad-spectrum antibacterial activity. This efficacy extended to the inhibition of growth in both gram-positive and gram-negative bacterial strains. It is well-established that the fruit of *G. atroviridis* is a rich source of various organic acids. Based on findings from multiple studies (Amran *et al.*, 2009; Al-Askalany, 2018), the compounds identified in the fruit include citric acid, acetic acid, lactic acid, malic acid, tartaric acid, ascorbic acid (vitamin C), and hydroxycitric acid (HCA), which are the natural agents that could have several advantages, such as pharmaceutical properties (antibacterial activity), as well as lack of toxicity. Moreover, Hamidon *et al.* (2017) also reported that *G. atroviridis* fruit contained other active ingredients such as flavonoids, isoflavonoids, and alkaloids, which showed high potential against pathogenic bacteria.

Makras and Vuyst (2006) reported that several mechanisms have been suggested for the antibacterial activities of organic acids in inhibiting the growth of pathogenic bacteria. Firstly, a decrease in pH level due to the production of organic acids. Secondly, the undissociated form of organic acids can enter bacterial cells and then dissociate within the cytoplasm. This dissociation releases hydrogen ions (H⁺), leading to an accumulation of H⁺ and a reduction in the pH value inside the bacterial cell. According to Carpenter and Broadbent (2009) confirmed that the intracellular accumulation of anions is a key factor contributing to the inhibition of bacterial growth. Moreover, a hugh number of H⁺ ions within the bacterial cell stimulate the activation of H⁺ ATPase pumps, which actively transport H⁺ ions out of the cell. This process results in energy loss for the bacteria, leading to cell death. Additionally, other active ingredients, such as flavonoids, isoflavonoids which found in *G. atroviridis* fruit, also damage the bacterial cell membrane, further contributing to bacterial death.

The findings of this investigation also demonstrated that *G. atroviridis* fruit contained HCA, as a key active ingredient and orther organic acids which showed potential as an antibacterial agent with antibacterial properties.

Productive performance of Japanese quails

Our findings of the current study revealed that quail chicks fed diets supplemented with commercial organic acids and *G. atroviridis* powder showed significantly increased final body weight. These results may be dued to varios important substances present in *G. atroviridis* fruit, such as hydroxycitric acid (HCA), other organic acids, and phenolic compounds (Lewis and Neelakantan, 1965). These compounds effectively stimulate feed appetite, leading to increased

feed intake in the animals. As a result, the quails received sufficient nutrients to meet their body's requirements, promoting increased final body weight.

According to a previous study by Niyomdecha et al. (2022b) investigated the effect of supplementing broiler chicken feed with G. atroviridis powder, linking its benefits to the presence of key organic acids and other bioactive compounds. Dietary inclusion of 32 g/kg of G. atroviridis powder. This supplementation led to a significant increase in the feed intake, final body weight, and body weight gain of broiler chickens during the 4-5-week -old period. The observed positive effects on productive performance are attributed to the fruit's rich phytochemical profile, which includes the key active ingredient (hydroxycitric acid, HCA), other organic acids (citric acid, acetic acid, malic acid, and tartaric acid), and phenolic compounds. Jantan et al. (2011) quantified the total phenolic content in G. atroviridis fruit at 4.4 mg gallic acid equivalent per gram. Besides another researcher declared that there are numerous bioactive compounds contain in the G. atroviridis fruit such as alkaloids, flavonoid, saponins, and tannins which were highly effective against the growth of pathogenic bacteria (S. aureus) (Djarot et al., 2020). Furthuremore, some researchers also reported that G. atroviridis fruits contained beta-carophyllene, beta-caryophyllene alcohol, β-caryolanol, and alpha-humulene. These active ingredients possess high antioxidant levels, antioxidant capacities and free radical scavenging activities (Tan et al., 2012). A comprehensive review of the literature indicates that the fruits of G. atroviridis offer a wide range of potential health and therapeutic benefits (Hamidon et al., 2017), including antioxidant, antimicrobial, antifungal, antiobesity, cytotoxicity, antimalarial, inflammatory and antinicotine stress activities. Furthermore, several independent studies have specifically confirmed that G. atroviridis fruit extracts demonstrate strong antimicrobial, antioxidant, and antitumor-promoting activities (Mackeen et al., 1997; Mackeen et al., 2000), as well as antifungal and antibacterial properties (Al-Askalany, 2018) that possess effective benefits for animal health. Additionally, G. cambogia fruit extract has been shown to efficiently improve glucose metabolism in animals (Hayamizu et al., 2003). According to Suwanmanee et al. (2014), they were found that G. atroviridis fruit extracts have high potential against fungi growth and showed good property for reducing inflammatory cytokines. Moreover, G. atroviridis fruit possesses antioxidant properties and exhibits strong antimicrobial activity. Meanwhile, Sripradha and Magadi (2015) investigated the therapeutic effects of the crude extract from G. atroviridis fruit, demonstrating significant positive impacts on metabolic health and inflammation in an animal. A dose of 400 mg/kg body weight of the crude extract effectively reduced both glucose intolerance and leptin levels. The crude extract also caused a significant decrease in tumor necrosis factor-alpha (TNF-

a) levels, a cytokine that induces inflammation in animals. As a result, this led to a reduction in inflammation and improved animal health. However, research by Kardaya *et al.* (2022) indicated that supplementing the diets of spent layer ducks with 2, 4, and 6% of *G. atroviridis* leaf meal significantly improved meat quality by reducing both cooking loss and crude fat content. This finding is supported by Dihansih *et al.* (2020), who specifically reported that supplementation with 2% of *G. atroviridis* leaf meal decreased the fat content in both the meat and the meat with skin of ducks. Conversely, when supplementing broiler chickens' diets with *G. atroviridis* leaf meal, Sebola *et al.* (2011) observed no significant difference in key production indices, including feed intake, final body weight, body weight gain, and feed conversion ratio of broiler chickens.

G. atroviridis fruits are rich in various organic acids that efficiently mediate a reduction in gastrointestinal pH level, thereby suppressing the growth of bacterial pathogens. This mechanism is associated with a reported improvement in the digestive system, augmented nutrient utilization, and enhanced gut integrity in Japanese quails. Consequently, the evidence supports the conclusion that incorporating G. atroviridis powder into the diet serves to boost the productive performance of Japanese quails.

HPLC confirmed a high HCA content, measuring 435.14±6.67 mg/g (43.51%). Evaluation of the acetone extract's antimicrobial activity showed that the maximum concentration (200,000 μg/mL) produced significant inhibition zones against *E. coli* (35.53 mm) and *S. enterica* (33.08 mm). The extract's potency was further defined by an MIC of 12,500 μg/mL for both pathogens. The MBC for complete eradication was 25,000 μg/mL for *E. coli* and 12,500 μg/mL for *S. enterica*. Crucially, quails receiving a dietary supplement of 0.2% commercial organic acids, or *G. atroviridis* powder at 10 g/kg and 20 g/kg, exhibited a statistically significant (P<0.05) improvement in final body weight compared to the control, evidenced across the 7–8, 8–9, and 3–9 weeks of age.

The finding can be concluded that the acetone extract of *G. atroviridis* fruit contained HCA, as a crucial active ingredient showing potential as an antibacterial agent with antibacterial properties. Therefore, *G. atroviridis* could be used as a feed additive for Japanese quails. In addition, supplementing the diet with 10–20 g/kg of *G. atroviridis* powder could improve the productive performance of quail chicks at 7–9 weeks of age. For further study, it should investigate the *G. atroviridis*'s powder supplementation in diet to evaluate gut health, carcass quality, and meat quality of Japaneses quails.

Acknowledgements

The authors would like to express sincere gratitude to the faculty of agriculture, Princess of Naradhiwas University for providing the experimental area, all necessary equipments and supporting

for this study. The authors would like to thank to Dr. Patimaporn Plodpai who supporting knowledge related to antibacterial activity assay. Additionally, the authors would like to express our gratitude to Linq Technology Corporation Limited, Chachoengsao Province, Thailand, for providing commercial organic acid (Acidtec-401) for this study.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- Al-Askalany, S. A. (2018). Evaluation of *Garcinia cambogia* plant extracts as antifungal, antibacterial and antioxidant. Egyptian Journal of Agricultural Research, 96:121-134.
- Amran, A. A., Zaiton, Z., Faizah, O. and Morat, P. (2009). Effect of *Garcinia atroviridis* on oxidative stress and atherosclerotic changes in experimental guinea pigs. Singapore Medical Journal, 50:295-299.
- Bacayo, M. F. D. C., Sajali, N. S., Choon, W. C., Fattepur, S., Nulugal, K. C., Khan, J., Asmani, F. and Yusuf, E. (2018). The study of the antibacterial activity of asam gelugor (*Garcinia atroviridis*) against Methecillin-resistance *Staphylococcus Aureus* (MRSA), *Streptococcus Pneumonia* and *Klebseilla Pneumoniae*. In proceeding of BROMO Conference (BROMO 2018), 118-123.
- Carpenter, C. E. and Broadbent, J. R. (2009). External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. Journal of Food Science, 74:R12-R15.
- Clinical and Laboratory Standards Institute (CLSI). (2008). M38-A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, second edition. Wayne: Clinical and Laboratory Standards Institute.
- Dihansih, E., Kardaya, D. and Wahyuni, D. (2020). Fat content and fatty acids profiles of rejected ducks fed nonconventional ration with natural hydroxy citrate {(-)-HCA} addition. International Journal of Scientific & Technology Research, 9:1275-1277.
- Djarot, P., Utami, N. F., Veonicha, N., Rahmadini, A. and Iman, A. N. (2020). Antibacterial activity tests of Staphylococcus aureus and phytochemical screening in family Asteraceae, Clusiaceae, phyllanthaceae. Systematic Reviews in Pharmacy, 11:322-329.
- Edirisinghe, E. A. H. E., Nawarathna, S. B., Marapana, R. A. U. J. and Jaysinghe, J. (2015). Extraction, crystallization, preservtion, pelletizing and quantification of hydroxycitric acid from *Garcinia cambogia*. International Journal of Innovative Research in Technology 2:3-10.
- Gogoi, A., Gogoi, N. and Neog, B. (2014). Estimation of (-)-hydroxycitric acid (HCA) in *Garcinia lanceaefolia* ROXB. Using novel HPLC methodology. International Journal of Pharmaceutical Sciences and Research, 5:4993-4997.

- Hamidon, H., Susanti, D., Taher, M. and Zakaria, Z. A. (2017). Garcinia atroviridis A review on phytochemicals and pharmacological properties. Marmara Pharmaceutical Journal, 21:38-47.
- Hart, C. and Cock, I. E. (2016). An examination of the antimicrobial and anticancer properties of Garcinia cambogia fruit pericarp extracts. A Multifaceted Peer Reviewed Journal in the field of Biology, Medicine, Engineering and Science, 2:23-26.
- Hayamizu, K., Hirakawa, H., Oikawa, D., Nakanishi, T. Takagi, T., Tachibana, T. and Furuse, M. (2003). Effect of Garicinia cambogia extract on serum leptin and insulin in mice. Fitoterapia, 74:267-273.
- Jantan, I., Jumuddin, F. A., Saputri, F. C. and Rahman, K. (2011). Inhibitory effects of the extracts of *Garcinia* species on human low-dencity lipoprotein peroxidation and platelet aggregation in relation to their total phenolic contents. Journal of medicinal plants research 5:2699-2709.
- Kardaya, D., Wahyuni, D. and Dihansih, E. (2022). Physical and chemical qualities of spent layer duck meat fed diets supplemented with *Garcinia atroviridis* leaf meal. Journal of Animal Health and Production, 10:348-351.
- Kerddonfaek, J. (2010). 140 miracle plant species reduce cholesterol in blood, pp.176-177. Seven printing Bangkok.
- Lewis, Y. S. and Neelakantan, S. (1965). α– Hydroxycitric acid the principle acid in the fruits of Garcinia cambogia Desr. Phytochemistry, 4:619-625.
- Lim, T. K. (2012). Edible medicinal and non-medicinal plants volume 2: Fruits. 21-28.
- Mackeen, M. M., Ali, A. M., El-Sharkawy, S. H., Manap, M. Y., Salleh, K. M., Lajis, N. H. and Kawazu, K. (1997). Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (ulam). International Journal of Pharmacognosy, 35:174-178.
- Mackeen, M. M., Ali, A. M., Lajis, N. H., Kawazu, K., Hassan, Z., Amran, M., Habsah, M., Mooi, L. Y. and Mohamed, S. M. (2000). Antimicrobial, antioxidant, antitumour-promoting and cytotoxic activities of different plant part extracts of *Garcinia atroviridis* Griff. ex T. Anders. Journal of Ethnopharmacology, 72:395-402.
- Mackeen, M. M., Ali, A. M., Lajis, N. H., Kawazu, K., Kikuzaki, H. and Nakatani, N. (2002). Antifungal garcinia acid esters from the fruits of *Garcinia atroviridis*. Zeitschrift für Naturforschung, 57:291-295.
- Makras, L. and Vuyst, L. D. (2006). The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. International Dairy Journal, 16:1049-1057.
- Niyomdecha, A., Ngampongsai, W., Wattanachant, C., Rattanawut, J. and Niyom Bundit, T. (2021). A study on production management of asam gelugur (*Garcinia atroviridis*) in Sai khao subdistrict, Khok pho district, Pattani province, Thailand Nakkhabut Paritat Journal, 13:1-14.
- Niyomdecha, A., Wattanachant, C., Rattanawut, J., Plodpai, P. and Ngampongsai, W. (2022a). Antibacterial activity of ethanol extract of asum gelugur (*Garcinia atroviridis*) fruits from Southern Thailand. Thai Journal of Pharmaceutical Sciences, 46:346-352.

- Niyomdecha, A., Wattanachant, C., Rattanawut, J. and Ngampongsai, W. (2022b). Productive performance and carcass quality of broiler chickens by dietary asam gelugur (*Garcinia atroviridis*) powder supplementation. (Doctor Thesis). Prince of Songkla University, Thailand.
- Pangsuban, S., Bamroongrugsa, N., Kanchanapoom, K. and Nualsri, C. (2009). Facultative apomixis in *Garcinia atroviridis* (clusiaceae) and effects of different pollination regimes on reproductive success. Tropical Life Sciences Research, 20:89-108.
- Phongpaichit, S., Rungjindama, N., Rukachaisirikul, V. and Saka-yaroj, J. (2006). Antimicrobial activity in cultures of endophytic fungi isolated from *Garcinia* species. FEMS Immunology and Medical Microbiology, 48:367-372.
- Plodpai, P., Chuenchitt, S., Petcharat, V., Chakthong, S. and Voravuthikunchai, S. P. (2013). Anti-Rhizoctonia solani activity by *Desmos chinensis* extracts and its mechanism of action. Crop Protection, 43:65-71.
- Ritthiwigrom, T., Laphookhieo, S. and Pyne, S. G. (2013). Chemical constituents and biological civities of Garcinia cowa Roxb. Maejo International Journal of Science and Technology, 7:212-231.
- Sebola, N. A., Ng ambi, N. A., Norris, D. and Mbajiorgu, C. A. (2011). Effect of *Garcinia cambogia* leaf meal supplementaion level at finisher stage on productivity and juiciness of meat Ross 308 broiler chickens. Asian Journal of Animal and Veterinary Advances, 6:723-730.
- SAS. SAS/STAT® 14.3 User's guide. SAS Institute Inc., Cary, NC, USA. 2017.
- Sripradha, R. and Magadi, S. G. (2015). Efficacy of Garcinia cambogia on body weight, inflammation and glucose tolerance in high fat fed male wistar rats. Journal of Clinical and Diagnostic Research, 9:1-4.
- Susanti, D., Hamidon, H., Taher, M., Rusdi, M., Rusmili, A., Hamid, S. A. and Zakaria, Z. A. (2020). Lipid accumulation modulation by *Garcinia atroviridis* fruit extract in 3T3-L1 adipocyte cells. Journal of Biologically Active Products from Nature, 10:303-316.
- Suwanmanee, S., Khitinan, T. and Luplertlop, N. (2014). In vtro screening of 10 edible Thai plants for potential antifungal properties. Evidence-Based Complementary and alternative Medicine, 1-7.
- Tan, W. N., Wong, K. C., Khairuddean, M., Eldeen, I. M., Asmawi, M. Z. and Sulaiman, B. (2012). Volatile constituents of the fruit of *Garcinia atroviridis* and their antibacterial and anti-inflammatory activities. Flavour and Fragrance Journal, 1-8.
- Tan, W. N., Khairuddean, M., Wong, K.C., Khaw, K. Y. and Vikneswaran, M. (2014). New cholinesterase inhibitors from *Garcinia atroviridis*. Fitoterapia, 97:261-267.
 - (Received: 12 November 2024, Revised: 27 August 2025, Accepted: 1 September 2025)